### Institute of Physics NAS of Azerbaijan, Baku, Republic of Azerbaijan

The design and a manufacturing process of SPRITE-photodetectors on the basis of the  $Cd_xHg_{1-x}$  Te epifilms, growth in beforehand created furrows of the substrate is offered. Advantages of the offered design are shown in comparison with existing both in technological, and in design aspects.

УДК 621.315.512

## Электрические свойства и фоточувствительность изотипного гетероконтакта *n*-In<sub>2</sub>Se<sub>3</sub> - *n*-InSe

С. И. Драпак, З. Д. Ковалюк

Институт проблем материаловедения им. И. М. Францевича Национальной академии наук Украины, Черновицкое отделение, г. Черновцы, Украина

Исследованы механизмы токопереноса и вольт-фарадные характеристики фоточувствительного радиационно стойкого гетероконтакта n-In<sub>2</sub>Se<sub>3</sub> — n-InSe, в котором обедненная основными носителями заряда область локализована в более низкоомном полупроводнике — дефектном In<sub>2</sub>Se<sub>3</sub> *α*-модификации. Показано, что форма относительной квантовой эффективности фотопреобразования исследованных структур зависит от толщины слоя In<sub>2</sub>Se<sub>3</sub> и геометрии освещения гетероконтактов.

Селенид индия In<sub>2</sub>Se<sub>3</sub> принадлежит к широкому классу слоистых полупроводников. Опубликованные в литературе результаты исследования физических свойств этого полупроводника в монокристаллическом © Драпак С. И., Ковалюк<sup>13</sup>. Д., 2006 и пленочном видах, например в [1—4], носят достаточно противоречивый характер, что обусловлено как значительной дефектностью его структуры, так и наличием различных фаз ( $\alpha$ ,  $\beta$ ,  $\delta$ ,  $\gamma$ ,  $\kappa$  и др.), нередко содержащихся в пределах одного образца. Именно дефектность кристаллической структуры In<sub>2</sub>Se<sub>3</sub> является предпосылкой перспективности использования этого материала в качестве основы детекторов ионизирующего излучения [5]. Относительно возможности использования In<sub>2</sub>Se<sub>3</sub> при изготовлении фоточувствительных структур в литературе сложилась достаточно парадоксальная ситуация. Так, согласно [6], анизотипные гетеропереходы In<sub>2</sub>Se<sub>3</sub>—InSe, полученные методом термического воздействия на подложки из InSe, являются практически нечувствительными к воздействию света. В то же время присутствие у-моди-фикации In<sub>2</sub>Se<sub>3</sub>, являющееся следствием недоформирования слоев CuInSe<sub>2</sub>, зафиксировано с помощью рентгеновских исследований в тонкопленочных сандвичевых структурах, например ZnO/ZnIn<sub>x</sub>Se<sub>v</sub>/CuInSe<sub>2</sub>, с КПД фотопреобразования 2,3—13 % [7, 8]. Монокристаллический In<sub>2</sub>Se<sub>3</sub> является мягким материалом, для которого механическая обработка поверхности, разработанная для освоенных промышленностью полупроводников, неприемлема. Нанесение же различных металлов (In, Cu, Sn и др.) на поверхность дефектного α-In<sub>2</sub>Se<sub>3</sub>, полученную путем

скола, приводит к "забиванию" оборванных линий связи примесями, и выходящие на поверхность дислокации оказываются электрически неактивными, а сами контакты металл-полупроводник — омическими. Более того, нанесение металлов методом вакуумного напыления, проводимое при температурах подложки T ≥ 150 °C (для улучшения адгезии), не исключает диффузии металла в полупроводник, что приводит, как правило, к образованию в приконтактной области  $n^+$ слоя [9]. Все это делает создание диодов Шоттки на основе этого полупроводника крайне проблематичным. Исследования физических свойств двойных гетероструктур, в которых одним из компонентов является In<sub>2</sub>Se<sub>3</sub>, сводятся в основном к исследованию процессов его роста на поверхностях других полупроводников, например [10], или же структур, в которых In<sub>2</sub>Se<sub>3</sub> (монокристалл, пленка) играет роль низкоомного электрода, а область пространственного заряда полностью смещена в более высокоомную компоненту (образование инверсионного слоя в равновесных условиях), например в [11, 12]. В настоящей статье, которая является частью исследований, проводимых в целях выяснения возможности использования дефектного α-In<sub>2</sub>Se<sub>3</sub> в фотоэлектронике, приве-

дены результаты исследования электрических и фотоэлектрических свойств фоточувствительных радиационно стойких изотипных гетероконтак-

тов (ГК) *n*-α-In<sub>2</sub>Se<sub>3</sub>—*n*-InSe, которые могут представлять интерес для оценки путей оптимизации основных

фотоэлектрических характеристик в структурах на основе In<sub>2</sub>Se<sub>3</sub>.

Для изготовления ГК использовали InSe и In<sub>2</sub>Se<sub>3</sub> nтипа проводимости со структурой гексагональной αфазы ( $E_g = 1,42$  эВ при ком-натной температуре). Концентрации носителей заряда в обоих полупроводниках определялись из холловских измерений и при комнатной температуре T составляли ~10<sup>15</sup> и 4·10<sup>17</sup> см<sup>-3</sup> для InSe и In<sub>2</sub>Se<sub>3</sub>, соответственно. ГК изготовляли методом посадки на оптический контакт. Для уменьшения влияния слоя атомов кислорода, адсорбированных из атмосферы поверхностями полупроводников, играющего в такого типа структурах роль диэлектрического зазора [13], структуры создавались под воздействием давления  $P \approx 100$  кПа. Токо-выводящие контакты изготовлялись с помощью In-Ga-амальгамы с последующим вплавлением индия со стороны In<sub>2</sub>Se<sub>3</sub> и чистого In — со стороны InSe. Были проведены измерения вольт-амперных характеристик (ВАХ), их температурной зависимости, вольт-фарадных характеристик (ВФХ), а также спектральной зависимости относительной квантовой эффективности при комнатной температуре.

В том случае, если предположение о равенстве величин электронного сродства для InSe и In<sub>2</sub>Se<sub>3</sub> ( $\chi_{InSe}$  =  $\chi_{In_2Se_3} = 3,6$  эВ [14]), экспериментально подтвержденное в [11], верно, и в пренебрежении влиянием поверхностных состояний, как это изображено на энергетической диаграмме (см. рис. 1, а), следовало бы ожидать линейности ВАХ изотипного ГК n-In<sub>2</sub>Se<sub>3</sub>—n-InSe. Тем не менее ВАХ таких контактов в широком диапазоне температур являются типичными диодными характеристиками (рис. 2, кривые 1, 2), причем пропускное направление ВАХ соответствует подключению минуса внешнего источника тока к менее высокоомной компоненте гетероструктуры n-In<sub>2</sub>Se<sub>3</sub>. Этот факт свидетельствует о том, что область, обедненная основными носителями заряда (ОООНЗ), находится преимущественно в более низкоомном In<sub>2</sub>Se<sub>3</sub>, что возможно лишь при наличии на поверхности этого полупроводника поверхностного потенциала, обусловленного поверхностными акцепторными состояниями (количество "оборванных" связей на поверхности InSe  $\leq 10^{10}$  см<sup>-2</sup> [15]).



Рис. 1. Энергетическая диаграмма изотипного гетероконтакта n-α-In<sub>2</sub>Se<sub>3</sub>—n-InSe в пренебрежении (а) и при наличии поверхностных состояний на поверхности дефектного α-In<sub>2</sub>Se<sub>3</sub> (б, в, г) в условиях равновесия (а, б), при прямом (в) и при обратном (г) смещениях. Все величины указаны в электронвольтах.

При построении энергетических диаграмм реального ГК (б, е, г) учитывалось наличие на границе раздела диэлектрического зазора между контактирующими полупроводниками





Таким образом, диодные свойства гетероструктуры *n*-In<sub>2</sub>Se<sub>3</sub>—*n*-InSe в значительной степени определяются свойствами той части ОООНЗ, сопротивление которой превышает сопротивление более высокоомной компоненты контакта — InSe. Температурная зависимость прямого тока при U = 0,2 В линейна в координатах ln I =

 $= f(T^{1/4})$  (см. рис. 2, кривая 4), т. е. выполняется закон Мотта [16]

$$I = I_0 [-(T_0/T)^{1/4}];$$
  
$$T_0 = \beta (kg(E_F)a^3)^{-1},$$

где  $g(E_F)$  — плотность состояний на уровне Ферми;

- *k* постоянная Больцмана;
- а радиус локализации электрона;
- β постоянная, рассчитываемая на основании теории протекания (для трехмерной задачи β = 21).

Такая зависимость тока, как функции от температуры, свидетельствует о реализации прыжковой проводимости с переменной длиной прыжка по состояниям вблизи уровня Ферми в ОООНЗ, локализованной в дефектном In<sub>2</sub>Se<sub>3</sub>. По наклону кривой ln  $I = f(T^{1/4})$  (см. рис. 2, кривая 4) получено значение  $T_0 = 4,57 \cdot 10^8$  K, а величина плотности состояний на уровне Ферми  $g(E_F) = 5,18 \cdot 10^{16}$  эВ<sup>-1</sup>·см<sup>-3</sup>. Согласно [16] протекание происходит в узком интервале энергий вблизи уровня Ферми, который может быть оценен по формуле

$$\Delta = -d \ln I/d(kT)^{-1}.$$

Средняя энергия в нашем случае составляет  $\Delta = 0.07$  эВ, что дает концентрацию ловушек  $N_t = \Delta g(E_F) = 3.63 \cdot 10^{15}$  см<sup>-3</sup>.

Следует отметить, что высокочастотная зависимость емкости C от напряжения (измеренная при частоте 1 МГц) в диапазоне U = -0,4÷+0,4 В описывается выражением, типичным для поверхностно-барьерных структур (рис. 3, кривая 1) [17]

$$C = (e/2\varepsilon_1\varepsilon_0 n)^{1/2} (\phi_0 - U)^{-1/2}, \qquad (1)$$

где *е* — заряд электрона;

- ε<sub>1</sub> и ε<sub>0</sub> диэлектрические проницаемости In<sub>2</sub>Se<sub>3</sub> и вакуума, соответственно;
- *n* концентрация основных носителей заряда в In<sub>2</sub>Se<sub>3</sub>;
- φ<sub>0</sub> высота барьера, равная в нашем случае величине поверхностного потенциала φ<sub>s</sub> дефектного In<sub>2</sub>Se<sub>3</sub>.

Величина  $\varphi_0$  оценивалась путем аппроксимации зависимости  $U = f(1/C^2)$  к оси напряжений и составляла 0,64±0,02 В, что хорошо согласовалось с величиной токового напряжения отсечки (0,6 В), определенной из ВАХ структуры при комнатной температуре. При увеличении прямого смещения емкость изотипных ГК *n*-In<sub>2</sub>Se<sub>3</sub> *n*-InSe выходила на насыщение (см. рис. 3, кривые 1, 2) и фактически шунтировалась геометрической емкостью InSe (см. рис. 3, кривая 3). Полное число состояний на границе раздела оценивалось с помощью известных соотношений, представленных в [17], и составляло  $N_S \approx -Q_S/e$  =

=  $1,59 \cdot 10^{12}$  см<sup>-2</sup>. Достаточно низкое значение  $N_S$  может свидетельствовать о том, что "максимально тесный контакт" реализуется не по всей геометрической площади структур, а только в местах наличия участков с минимальным количеством "оборванных связей", которые доминируют над рельефом поверхности дефектного In<sub>2</sub>Se<sub>3</sub>.



Рис. 3. Прямые ветви (1, 2), а также экспериментальные (точки) и теоретические (сплошные линии) начальные участки прямых веток BAX (3, 4) изотипного гетероконтакта п-

*а-In<sub>2</sub>Se<sub>3</sub>—n-InSe при Т, К:* 1, 3 — 285; 2, 4 – 77. Площадь контакта *S* = 0,12 см. Толщина пластины InSe *L* = 1,2 мм

В том случае, когда электроны и дырки, захваченные ловушками, оказываются локализованными в различных областях пространства (для того чтобы произошел акт рекомбинации, носители вынуждены туннелировать), выражение для скорости туннельной рекомбинации в полупроводнике в пренебрежении распределением локальных состояний по энергиям задается выражением [18]

$$U = \frac{\sigma_{p}\sigma_{n}v_{th}\omega N_{t}^{2}(pn - p_{l}n_{l})}{\sigma_{p}\sigma_{n}v_{th}(n+n_{l})(p+p_{l})+\omega N_{t}[\sigma_{n}(n+n_{l})+\sigma_{p}(p+p_{l})]}, (2)$$

а выражение для плотности тока

$$j_{t-r} = e \int_{0}^{W} U(x) dx$$
 (3)

в предположении экспоненциальности приповерхностного потенциала  $\phi_s$  в In<sub>2</sub>Se<sub>3</sub> может быть записано в виде

$$j_{t-r} = \frac{2KTV}{\varphi_0 - U} \times \frac{\omega N_t^2 \sigma_p \sigma_n v_{th} n_i^2 \left[ \exp(eU / kT) - 1 \right]}{\sigma_p \sigma_n v_{th} (n+n_l) (p+p_l) + \omega N_t \left[ \sigma_n (n+n_l) + \sigma_p (p+p_l) \right]}, (4)$$

где в (2) и (4) W — толщина обедненной области;

 $\times -$ 

σ

σ<sub>n</sub> и σ<sub>p</sub> — сечения захвата электрона и дырки, соответственно;

 $v_{th} = (3kT/m^*)^{1/2}$  — тепловая скорость носителей;

ω = ω<sub>o</sub>/N<sub>t</sub> — вероятность туннелирования, отнесенная к единичной концентрации состояний;

*n*<sub>l</sub> и *p*<sub>l</sub> — концентрации электронов и дырок, приведенные к уровню локального состояния;

*m*<sup>\*</sup> — эффективная масса.

Величина вероятности туннельного прыжка в единицу времени  $\omega_0$  определяется интегралом перекрытия и может быть оценена по формуле

$$\omega_{\rm o}(r) = v_{ph} \exp(-2 r/a), \qquad (5)$$

где v<sub>ph</sub> — частота характеристического фонона;

*r* — длина прыжка, равная среднему расстоянию между примесями ( $\approx N_t^{-1,3}$ );

*а* — радиус локализации электрона.

Для получения (4) интеграл (3) вычислялся методом полураспада [19], а значение концентрации свободных носителей заряда в точке максимума скорости рекомбинации принималось равным [18]

$$n = n_{i} \sqrt{\frac{\sigma_{p}}{\sigma_{n}} \left( \frac{\sigma_{n} n_{i} + \omega N_{t}}{\sigma_{p} p_{i} + \omega N_{t}} \right)} \exp\left(\frac{eU}{2kT}\right).$$

Результаты теоретического расчета начальных участков ВАХ по формуле (4) представлены сплошными линиями на рис. 3 (кривые 3, 4) и хорошо согласуются с экспериментальными данными, обозначенными на рис. 3 (кривые 3, 4) точками. При расчетах в качестве подгоночного параметра использовалось значение энергии локализации глубоких центров  $E_t = E_v + 0,65$  эВ, а вместо W использовалась величина  $W_{-x}$  (толщина той части ОООНЗ в In<sub>2</sub>Se<sub>3</sub>, сопротивление которой превышало сопротивление InSe).

При увеличении прямого смещения толщина ОООНЗ уменьшается до тех пор, пока ее сопротивление не окажется соизмеримым с сопротивлением более высокоомной компоненты ГК — InSe, после чего полное падение напряжения на структуре перераспределяется между ОООНЗ в  $In_2Se_3$  и моноселенидом индия.

При U > 0,3-0,4 В ВАХ гетероструктур *n*-In<sub>2</sub>Se<sub>3</sub>--*n*-InSe (см. рис. 3, кривые 1, 2) описывается выражениями, характерными для токов, ограниченных пространственным зарядом [20] в режиме насыщения скорости

$$I = 2\varepsilon_2 \varepsilon_0 v_s SU/L_0^2 \tag{6}$$

и в режиме подвижности (безловушечный квадратичный закон)

$$I = 8\varepsilon_2 \varepsilon_0 \mu_n S U^2 / L_0^3.$$
 (7)

- В (6) и (7)  $\varepsilon_2$  диэлектрическая проницаемость InSe;  $v_s$  — скорость насыщения;
  - μ<sub>n</sub> подвижность электронов;
  - S площадь ГК;
  - $L_0$  толщина высокоомного слоя, равная в нашем случае толщине пластины InSe L и той части

Прикладная физика № 1-2006

ОООНЗ ( $W_{-x}$ ), сопротивление которой соизмеримо с сопротивлением InSe.

Исходя из экспериментальных данных величина  $L_0$ , рассчитанная по формулам (6) и (7), находилась в хорошем согласии с толщиной пластин InSe L, использованных для изготовления структур, незначительно ее превышая.

Наличие участков резкого роста тока в обратно смещенных ГК n-In<sub>2</sub>Se<sub>3</sub>—n-InSe, наблюдаемых при |U|~0,6 и 5 В (см. рис. 2, кривая 1), характерно для резонансного туннелирования через два последовательно расположенных туннельно-прозрачных барьера с возможным промежуточным участием квантовой ямы [21]. Вполне вероятно, что вторым барьером на пути следования электронов из объема InSe в In<sub>2</sub>Se<sub>3</sub> (первый – обедненная область в In<sub>2</sub>Se<sub>3</sub>) является слой атомов кислорода, изначально адсорбированных поверхностями полупроводников, играющий в такого типа структурах роль диэлектрика [13]. Влияние этого слоя на электрические свойства исследуемого ГК только подтверждает выводы, сделанные в [22], о невозможности его полного устранения в такого типа структурах под воздействием давления. Причем роль квантовой ямы в исследуемых ГК может играть инверсионный слой, который образуется в приповерхностной области In<sub>2</sub>Se<sub>3</sub> при обратных смещениях. Освещение структуры равносильно прямому смещению барьера в In<sub>2</sub>Se<sub>3</sub> и приводит к уменьшению его высоты. В этом случае образование инверсионного слоя уже не реализуется даже при достаточно больших значениях обратного напряжения, и как следствие участки резкого роста тока на обратных ветвях ВАХ уже не наблюдаются (см. рис. 2, кривая 3).

Выход емкости, измеренной при 1 МГц, на насыщение в области обратных смещений (рис. 4, кривая 1) и тенденция к росту относительно низкочастотной C (см. рис. 4, кривая 2) свидетельствуют о том, что ГК n-In<sub>2</sub>Se<sub>3</sub>—n-InSe можно рассматривать как структуру с диэлектрическим зазором, шунтированную более высоком-ной компонентой — пластиной селенида индия.





формуле 1 (4).

Площадь гетероконтакта S = 0,12 см. T = 285 К

Согласно [23] минимальная емкость таких структур наблюдаться должна при смещениях  $U \sim 2\phi_B$ , где  $\phi_B$  — энергетическое расстояние между уровнем Ферми и уровнем собственной проводимости в In<sub>2</sub>Se<sub>3</sub> (в нашем случае  $\phi_B = 0.58$  эВ при комнатной температуре), что и наблюдается на эксперименте (см. рис. 4, кривая 1). Уменьшение как высоко-, так и низкочастотной емкостей при |U| ~8—9 В связано с достижением пробивного напряжения [23] и подтверждается измерениями ВАХ. "Мягкая" обратная ветвь ВАХ ΓК  $n-In_2Se_3$ —n-InSe при T = 285 К в диапазоне |U| = 5,5—10 В (см. рис. 2, кривая 1) характерна как для электрического пробоя структур с большим количеством дефектов, так может быть и следствием образования каналов поверхностной электропроводности в дефектном In<sub>2</sub>Se<sub>3</sub> [24].

Фоточувствительность ГК  $n-In_2Se_3$ —n-InSe при освещении со стороны более широкозонного  $In_2Se_3$  (вставка a на рис. 4) сильно зависит от толщины этого полупроводника l и макси-мальна при l, соизмеримых с толщиной ОООНЗ. Типичная спектральная зависимость относительной квантовой эффективности фотопреобразования  $\eta(hv)$  гетероструктур  $n-In_2Se_3$ —n-InSe для этого случая, полученная как отношение фототока к числу падающих фотонов, представлена на рис. 5, кривая 1). И если максимальная фоточувствительность обратносмещенных ГК смещена в более коротковолновую область

(см. рис. 4, кривая 1), что связано с преимущественной локализацией активной области фотопреобразования в более широкозонной компоненте структуры, то при прямом смещении распределение  $\eta(hv)$  более "равномерно" (см. рис. 5, кривая 2).



Рис. 5. Спектр относительной квантовой эффективности фотопреобразования изотипного гетероконтакта n-a-In<sub>2</sub>Se<sub>5</sub>—n-InSe при обратном (1) и прямом (2) смещениях при

освещении через слой In<sub>2</sub>Se<sub>3</sub>, толщина l которого соизмерима с толщиной области пространственного заряда W (вставка а), и при освещении структур по всей геометрической площади (вставка **б**) для случая, когда l >> W (3). T = 285 K

Последнее обстоятельство может свидетельствовать о том, что ситуация плоских зон в  $In_2Se_3$  в исследованном диапазоне прямых смещений практически не достигается: толщина ОООНЗ W с увеличением прямого смещения уменьшается до тех пор, пока ее сопротивле-

ние не станет соизмеримо с сопротивлением более высокоомной компоненты структуры – либо диэлектрического зазора, либо пластины InSe. После этого падение напряжения перераспределяется между ОООНЗ в In<sub>2</sub>Se<sub>3</sub>, а также диэлектрическим зазором и моноселенидом индия.

Уменьшение W при прямых смещениях приводит к уменьшению токовой чувствительности по абсолютному значению примерно на 15-20 % по сравнению с обратносмещенными ГК. При увеличении толщины In<sub>2</sub>Se<sub>3</sub> фоточувствительность резко уменьшается вплоть до ее исчезновения при освещении через слой этого полу-Спектральное распределение проводника. фотопроводимости ГК n-In<sub>2</sub>Se<sub>3</sub>—n-InSe с толстым слоем  $In_2Se_3 (l >> W)$  при освещении структур по всей геометрической площади (как это показано на рис. 5, вставка б) не зависит от полярности смещения и представлено на рис. 5, кривая 3. В этом случае максимум зависимости  $\eta(hv)$  коррелируется со спектром фоточувствительности монокристаллов InSe, а появление чувствительности в более коротковолновой области спектрального распределения может быть следствием отражения света от слоев InSe.

В заключение отметим, что полученные данные по механизмам токопереноса в изотипных ГК  $In_2Se_3$ —InSe следует учитывать при реализации возможных прикладных применений, в том числе в качестве радиационно стойких преобразователей для видимой и ближней ИК-области спектрального диапазона, а также для оптимизации конструктивных параметров и основных фотоэлектрических характеристик структур на основе дефектного  $In_2Se_3 \alpha$ -модификации.

#### Литература

1. Julien C., Eddrief M., Balkanski M., Hatriricraniotis E., Kambas K.// Phys. Stat. Sol. 1985. V. (a) 88. <sup>1</sup> 2. P. 687–695.

2. De Blasi C., Drigo A. V., Micocci G., Tepore A.// J. Cryst. Growth. 1989. V. 94. <sup>1</sup> 2. P. 455–458.

3. Se Han Kwon, Byung Tae Ahn// J. of the Korean Physical Society. 1997. V. 31. <sup>1</sup> 5. P. 796—801.

4. Wu J., Ager J. W., Yu K. M., Walukiewicz W.// Cond. Matter. 2003. V. 1. <sup>1</sup> 3. P. 1–23.

5. Koshkin V. M., Dmitriev Yu. N. Chemistry and Physics of Compounds with Loose Crystal Structure. — Switzerland: Harwood Ac. Publishers, Chem. Rev. Series, 1994.

6. Savchun V. P., Kytsai V. B.// Thin Solid Films. 2000. V. 361-362. <sup>1</sup> 1-2. P. 123-125.

7. Ohtake Y., Chaisitsak S., Yamada A., Kanogai M.// Jpn. J. Appl. Phys. 1998. V. 37. Part 1, <sup>1</sup> 6 A. P. 3220—3225.

8. Kampmann A., Sittinger V. S., Rechield J., Reineke-Koch R.// Thin Solid Films. 2000. V. 361—362. № 1—2. P. 309—313.

9. Заслонкин А. В., Ковалюк З. Д., Минтянский И. В., Янчук О. И.// Научный вестник Черновицкого университета. Сер. Физика и электроника. 2002. <sup>1</sup> 136. С. 142—147.

10. Bernede J. C., Marsillac S.// Materials Research Bulletin. 1997. V. 37. № 9. P.1193—1200.

11. Драпак С. И., Ковалюк З. Д., Нетяга В. В., Орлецкий В. Б.// Письма в ЖТФ. 2002. Т. 28. <sup>1</sup> 17. С. 1—8.

Драпак С. И., Нетяга В. В., Ковалюк З. Д.// Там же. С. 8—15.
Драпак С. И., Орлецкий В. Б., Ковалюк З. Д.// ФТП. 2004. Т.
38. <sup>1</sup> 5. С. 566—569.

14. Martinez-Pastor J., Segura A., Valdes J. L., Chevy A.// J. Appl. Phys. 1987. V. 21. 2. P. 1477—1483.

15. *Landolt-Bornstein*. Numerical Data and Functional Relatioships in Science and Technology New Ser. Group III: Crystal and Solid State Physics. V. 17, sv. F/ Ed. by Madelung O. — Berlin: Springer, 1983.

16. *Мотт Н., Дэвис Э.* Электронные процессы в некристаллических веществах. — М.: Мир, 1982.

17. Милнс А., Фойхт Д. Гетеропереходы и переходы металл полупроводник. — М.: Мир, 1975.

18. Булярский С. В., Ионычев В. К., Кузьмин В. В.// ФТП. 2003. Т. 37. <sup>1</sup> 1. С. 117—120.

19. Булярский С. В., Грушко Н. С.// ЖЭТФ. 2000. Т. 118. <sup>1</sup> 12. С. 1222—1228.

20. Ламперт М., Марк П. Инжекционные токи в твердых телах. — М.: Мир, 1979. 21. Карева Г. Г., Викслер М. И., Грехов И. В., Шулекин А. Ф.// ФТП. 2002. Т. 36. <sup>1</sup> 8. С. 953—958.

22. Драпак С. И., Воробец М. О., Ковалюк З. Д.// Там же. 2005. Т. 39. <sup>1</sup> 5. С. 633—635.

23. *Зи С.* Физика полупроводниковых приборов. — М.: Мир, 1984.

24. Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы. — М.: Высш. шк., 1987. — 480 с.

Статья поступила в редакцию 29 марта 2005 г.

# Electrical properties and photosensitivity of the isotopic $n-In_2Se_3-n-LnSe$ hetero-contact

S. I. Drapak, Z. D. Kovalyuk

Institute of Materials Technology Problems, National Academy of Sciences of Ukraine, Chernovtsy Section, Chernovtsy, Ukraine

Consideration is made to current transport mechanisms and to volt-farad performances of the photosensing radiation-hardened n-In<sub>2</sub>Se<sub>3</sub>—n-LnSe hetero-contact, in which the area, depleted by charge majority carriers, is localized in the more low-resistance semiconductor, namely in the defect In<sub>2</sub>Se<sub>3</sub> structure of  $\alpha$ -modification. It is shown that the shape of relative quantum efficiency of photoconverion for explored structures depends from a width of the In<sub>2</sub>Se<sub>3</sub> layer and from geometry of heterocontacts illumination.

УДК 621.315

## Фотоэлектрические и шумовые характеристики Ge<sub>x</sub>Si<sub>1-x</sub>/Si гетероструктур

А. В. Войцеховский, А. П. Коханенко, С. Н. Несмелов СФТИ при ТГУ, г. Томск, Россия

> *С. И. Ляпунов* НПП "Матричные технологии", Москва, Россия

> > *В. А. Юрьев* ИОФ РАН, Москва, Россия

Рассмотрены возможности оптимизации пороговых характеристик детекторов с внутренней фотоэмиссией на основе гетеропереходов p<sup>+</sup>-Ge<sub>x</sub>Si<sub>1-x</sub>/p-Si при действии в спек-© волинальном волизация в спектария высотой потенциального барьера на гетерогранице. Приведены результаты экспериментальных исследований электрофизических и фотоэлектрических характеристик гетероструктур GeSi/Si, созданных с помощью молекулярно-лучевой эпитаксии.

Эмиссионные фотодетекторы на основе гетеропереходов  $p^+$ -Ge<sub>x</sub>Si<sub>1-x</sub>/p-Si (HIP-детекторы) активно разрабатываются в течение последнего десятилетия [1—3]. Матрицы HIP-детекторов на основе GeSi обладают высокой однородностью и относительно низкой стоимостью. По механизму действия HIP-детекторы близки к эмиссионным детекторам на основе барьеров Шоттки. ИК-излучение поглощается свободными дырками в высоколегированном слое силицида германия. При внутренней фотоэмиссии части фотодырок в Si в пленке GeSi остается избыточный отрицательный заряд, который считывается с помощью ПЗС или МОПмультиплексора.

Важнейшим преимуществом HIP-детекторов по сравнению с распространенными детекторами на основе барьеров Шоттки PtSi/p-Si является более широкий спектральный диапазон фоточувствительности. Граничная длина волны ( $\lambda_c$ ) HIP-детекторов зависит от