ФИЗИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ PHYSICAL SCIENCE OF MATERIALS

PACS: 77.55.hd

УДК 539.234 EDN: UIUZST

Планарные конденсаторные структуры с диэлектрическим слоем на основе аморфного AlN

А. К. Ахмедов, Э. К. Мурлиев, М. А. Гитикчиев, А. Т. Темиров, А. Ш. Асваров

Плотные однородные аморфные диэлектрические слои нитрида алюминия с минимальным рельефом поверхности, характеризующиеся оптической шириной запрещенной зоны порядка 6,1 эВ, относительной диэлектрической проницаемостью – 8,5 и высокой оптической прозрачностью в широком диапазоне спектра от ближнего УФ до среднего ИК, были получены методом реактивного высокочастотного (ВЧ) магнетронного распыления алюминиевой мишени в атмосфере газовой смеси Ar-N₂ (соотношение 15:1) при относительно высоком давлении в камере на уровне 2,7 Па, мощности ВЧ-разряда 100 Вт и комнатной температуре подложки. Показана возможность низкотемпературного получения на основе данных слоев интегральных конденсаторных структур, в том числе прозрачных планарных емкостных структур для различных оптоэлектронных приложений.

Ключевые слова: тонкая пленка, магнетронное распыление, нитрид алюминия, прозрачный электрод, конденсатор.

DOI: 10.51368/1996-0948-2024-1-64-71

Введение

В настоящее время благодаря комплексу уникальных свойств нитрид алюминия рассматривается в качестве одного из наиболее перспективных материалов опто- и микроэлектроники [1, 2]. Большая ширина запрещенной зоны (6,2 эВ) позволяет использовать AlN в различных оптоэлектронных приложениях, работающих в широком диапазоне спектра, охватывающем ультрафиолетовою,

Ахмедов Ахмед Кадиевич ¹ , в.н.с., к.фм.н.					
E-mail: cht-if-ran@mail.ru					
Мурлиев Эльдар Камильевич ¹ , м.н.с.					
E-mail: murliev@mail.ru					
Гитикчиев Магомед Ахмедович ² , н.с.					
E-mail: dgu50@mail.ru					
Темиров Алибулат Темирбекович ² , зав. кафедрой,					
к.фм.н., доцент.					
E-mail: alibulat.temirov@bk.ru					
Асваров Абил Шамсудинович ³ , с.н.с., к.фм.н.					
E-mail: abil-as@list.ru					
¹ Дагестанский федеральный исследовательский центр					
Российской академии наук,					
Институт физики им. Х. И. Амирханова.					

видимую и инфракрасную области [3–5]. Высокая теплопроводность нитрида алюминия (до 285 $Bt \cdot m^{-1} \cdot K^{-1}$) [2] наряду с его высокой прозрачностью позволяет проектировать на его основе устройства для работы в условиях экстремально высокой оптической мощности [6]. В то же время высокий пьезоэлектрический коэффициент способствует широкому применению AlN в различных микроэлектромеханических системах [7–9], а в сочетании с оптическими свойствами и в

Россия, 367015, г. Махачкала, ул. М. Ярагского, 94. ² ФГБОУ ВО «Дагестанский Государственный
Технический Университет».
Россия, 367026, г. Махачкала, проспект Имама
Шамиля, 70.
³ ФГБУ «Национальный исследовательский центр
«Курчатовский институт».
Россия, 119333, Москва, Ленинский проспект, 59.
Статья поступила в редакцию 1.02.2024
Принята к публикации 22.02.2024
Шифр научной специальности: 1.3.5.

© Ахмедов А. К., Мурлиев Э. К., Гитикчиев М. А., Темиров Т. А. Т., Асваров А. Ш., 2024

[10–13]. опто-механических устройствах В большинстве перечисленных приложений нитрид алюминия присутствует в виде монокристаллов или эпитаксиальных тонких пленок, характеризующихся высоким кристаллическим совершенством. Однако не меньший интерес представляют и аморфные слои AlN, в значительной степени сохраняющие свойства, присущие данному материалу в кристал-Высокое лическом состоянии. удельное сопротивление в сочетании с высоким напряжением пробоя, высокой теплопроводностью, химической инертностью и термической стабильностью характеристик делают аморфные слои нитрида алюминия весьма перспективным материалом для применения в компактных устройствах высокой мощности, в частности в качестве диэлектрика в конденсаторах с высокой плотностью энергии для импульсных источников питания [14]. Важным прикладным достоинством аморфных слоев AlN также является масштабируемость и низкая стоимость технологии их осаждения, так как они могут быть получены при относительно низких температурах методом реактивного магнетронного распыления металлической алюминиевой мишени.

В настоящей работе исследованы процессы низкотемпературного магнетронного осаждения и характеристики слоев нитрида алюминия, а также планарных конденсаторов на их основе.

Эксперимент

Все рассматриваемые слои и тонкопленочные структуры были получены методом высокочастотного (ВЧ) магнетронного распыления на установке барабанного типа, оснащенной двумя расположенными диаметрально напротив друг друга распылительными магнетронными узлами, предназначенных для распыления мишеней диаметром 51 мм и толщиной 4 мм, и обеспечивающей остаточное давление P_0 не хуже 2×10^{-4} Па. Осаждение всех слоев производилось без нагрева подложек и расстояние от поверхностей мишеней до подложки в момент ее прохождения перед ними составляло 75 мм.

Для осаждения слоев нитрида алюминия использовался метод реактивного ВЧ-распыления металлической алюминиевой мишени чистотой > 99,99 % в атмосфере газовой смеси Аг– N_2 в объемном соотношении 15:1 при давлении P = 2,7 Па и мощности ВЧ-разряда, стабилизированной на уровне 100 Вт. Перед началом осаждения проводилось предварительное распыление мишени на заслонку в течение 10 минут.

В качестве подложек использовались боросиликатные стеклянные пластины размерами 25×26×1,1 мм (для низкотемпературного осаждения планарных конденсаторных структур), термически окисленный с поверхности кремний (для исследования морфологии и измерения толщины осажденного тонкопленочного материала) и пластины плавленого кварца (для исследования оптических свойств осажденного AlN в УФ-области).

Планарные конденсаторные структуры формировали методом послойного магнетронного осаждения через маски. Для достижения необходимой топологии нижнего и верхних электродов и диэлектрического слоя использовался набора масок, изготовленных с помощью прецизионной лазерной резки из алюминиевого сплава Д16Т толщиной 0,2 мм. Путем последовательной смены трех масок на стеклянной подложке формировался блок из 3 планарных конденсаторов, в котором над протяженным общим нижним электродом располагался диэлектрический слой AlN толщиной 600 нм с нанесенными поверх его тремя верхними электродами, обеспечивающих активную площадь межэлектродного перекрытия 9 мм² (3×3 мм).

В качестве материала для нижнего и верхних электродов конденсаторной структуры использовались прозрачные проводящие тонкие пленки на основе двойного оксида индия-цинка (IZO) толщиной 300 нм [15]. Для сравнения также была сформирована конденсаторная структура с металлическими электродами из хрома толщиной 200 нм. Оба типа электродов осаждались методом ВЧ магнетронного распыления соответствующих мишеней в атмосфере чистого аргона при давлении 0,3 Па и мощности ВЧ-разряда, стабилизированной на уровне 50 Вт. Нагрев подложек при осаждении электродов также не производился.

Для исследования морфологии поверхности и топографии скола напыленных структур применялась растровая электронная микроскопия (SEM Leo-1450, Карл Цейсс,

Германия). Данные по оптическому пропусканию слоев были получены с помощью спектрофотометра UV-3600 (Shimadzu, Япония). Оценку структурного состояния осажденных пленок AlN проводили с использованием дифрактометра PANalytical X'PERT PRO MPD, Нидерланды). Для исследования диэлектрических свойств аморфных слоев AIN в планарных конденсаторных структурах были задействованы универсальный вольтметр АКИП 2101/2 (Россия) потенциостата-И гальваностата Р-45Х (Россия). Измерение емкости конденсаторных структур проводилось на частоте 2 КГц при напряжении 1,5 В, а их импедансная спектроскопия – в интервале

Результаты и обсуждение

частот 1 МГц ÷ 1 Гц.

Исследования морфологии и микроструктуры слоев AlN показали, что при указанных выше технологических условиях реактивного распыления на подложке формируются плотные рентгеноаморфные слои AlN с приемлемой скоростью осаждения ~ 7 нм/мин. Согласно дифрактограмме, пред-

T, %

100

90

80

70

60

50 ∟ 100

350

Б

600

850

1100

ставленной на вставке А рисунка 1, материал слоя находится в рентгеноаморфном состоянии. Авторы полагают что, распыление в условиях относительно высокого давления в рабочей камере (P = 2,7 Па) увеличивает вероятность газофазного взаимодействию распыленных атомов алюминия с азотом, кластеризации потока реагентов, что, в сочетании с низкой температурой подложек, способствует аморфизации осаждаемых слоев.

Исследование топографии поперечного скола (вставка Б рисунка 1) показало, что слой AlN даже при значительной толщине сохраняет плотную однородную структуру и относительно гладкую морфологию с незначительным рельефом поверхности. В слое отсутстолбчатой ствуют признаки структуры, характерной для ориентированных поликристаллических слоев AIN, полученных при различных методах и режимах ионно-плазменного осаждения, например, при ВЧ-распылении на большой мощности керамической мишени AlN в атмосфере Ar-N2 с соотношением газовых компонент 1:1 [16] или импульсном реактивном распылении алюминиевой мишени в атмосфере Ar-N2 (65:35) при относительно низком давлении в камере (0,4 Па) [17].

> 5 95 20, град

А *I*_{XRD}, отн. ед.

15

1 мкм

1600

1350

Длина волны, нм

35

55

6

4

6

hv, эВ

2350

2100

B

 $(\alpha hv)^2$, $10^9 \text{ cm}^{-2} \cdot 3B^2$

1850

На рисунке 1 представлены также спектры оптического пропускания слоев AlN (спектры 1 и 3), напыленных на стеклянную и кварцевую подложки, соответственно. Для наглядности также приведены спектры пропускания чистых подложек (спектр 2 – стекло, спектр 4 – кварц). Можно видеть, что напыленные слои AlN характеризуются высокой оптической прозрачностью во всем исследуемом диапазоне длин волн. Ярко выраженные интерференционные экстремумы на обоих спектрах слоев свидетельствуют о высокой гладкости их интерфейсов. Резкий спад в ультрафиолетовой области, наблюдаемый на спектре 1, обусловлен поглощения УФ-излучения в стеклянной подложке. Данные оптической спектрометрии тонкопленочного образца, напыленного на кварце, (спектр 3) свидетельствуют 0 высокой прозрачности напыленного AlN в УФ-области, вплоть до 200 нм. Из данных оптической спектрометрии образца на кварце методом оптического поглощения была определена ширина запрещенной зоны. На вставке В рисунка 1 можно видеть, что экстраполяция линейного участка зависимости $(\alpha hv)^2 = f(hv)$ до пересечения оси абсцисс дает значение запрещенной зоны для прямых переходов равной 6,1 эВ, что находится в хорошем согласии с литературными данными [5, 18].

Далее для исследования диэлектрических свойств аморфных слоев AlN методом послойного магнетронного осаждения через маски при комнатной температуре на стеклянных подложках были получены планарные конденсаторные структуры Cr/AlN/Cr и IZO/AlN/IZO (рис. 2*a*). Выбор хрома в качестве материала металлических обкладок конденсатора обусловлен высокой адгезией тонкопленочного хрома к различным материалам и ранней коалесценцией зародышей, что обеспечивает формирование плотных сплошных пленок при минимальной толщине. В тоже время, принимая во внимание высокую прозрачность слоя AIN, использование в качестве обкладок конденсатора прозрачных электродов на основе широкозонных оксидов делает возможным получение прозрачной конденсаторной структуры. В нашем случае выбор прозрачного проводящего материала IZO был обусловлен тем, что, как было показано ранее [15], тонкие пленки IZO, осажденные при комнатной температуре характеризуются высоким оптическим пропусканием в видимой области спектра, плотной однородной аморфной структурой, гладкой морфологией поверхности и сравнительно низким удельным сопротивлением. Характеристики напыленных электродов приведены в таблице 1.

Рис. 2. Внешний вид (a) и микрофотографии поперечного скола (б) планарных конденсаторных Cr/AIN/Cr (слева) и IZO/AIN/IZO (справа). На фото дополнительно пронумерованы верхние обкладки трех сформированных на подложках конденсаторов с одной общей нижней шиной-обкладкой

Таблица 1

Толщина d, поверхностное сопротивление R_s, удельное сопротивление р и средний коэффициент оптического пропускания T_{ср.} в видимой области (400–700 нм) тонких пленок, использованных в качестве обкладок в конденсаторных структурах

Материал пленки	<i>d</i> , нм	<i>R_S</i> , Ом/квадрат	ρ, 10 ⁻⁴ Ом·см	<i>T</i> _{cp.} , %
Cr	200	1,85	0,37	_
IZO	300	10,5	3,15	83,7

Из рисунка 2а видно, что синтезированная конденсаторная структура IZO/AlN/IZO, исполненная на стекле, характеризуется достаточно высокой степенью светопропускания. Согласно данным оптической спектрометрии такая трехслойная структура имеет средний коэффициент пропускания $T_{\rm cp.} \approx 50 \%$ в видимом диапазоне (400-700 нм). Здесь можно отметить, что при высокой оптической прозрачности одиночных слоев AlN и IZO прозрачность трехслойной структуры существенно ниже, что связано с различиями в показателях преломления AlN и IZO. Очевидно, что для увеличения прозрачности трехслойной структуры необходима оптимизация и согласование оптических толщин *n*×*d* (*n* – показатель преломления, *d* – толщина) прослоек, образующих трехслойную структуру.

Результаты измерения емкости на частоте 2 кГц при напряжении 1,5 В сформированного массива конденсаторов в зависимости от типа материала электродов представлены в таблице 2. Также в таблице 2 приведены расчетные значения относительной диэлектрической проницаемости диэлектрического слоя ε_{AIN} для каждого типа конденсаторной структуры. Расчет проводился ПО формуле: $\varepsilon_{AIN} =$ = $(C \cdot d)/(\varepsilon_0 \cdot S)$, где C – емкость конденсатора, d – толщина диэлектрического слоя, $S = 9 \text{ мм}^2$ – площадь перекрытия верхней и нижней обкладками конденсатора, $\tilde{\varepsilon}_0 = 8,85 \times 10^{-12} \text{ } \Phi/\text{M}.$

Наблюдаемый разброс в значение емкости конденсаторов C1-C3 порядка 3,5 % повидимому связан с разбросом толщины слоя AlN, что был обусловлен геометрией эксперимента. Измеренная толщина диэлектрического слоя $d_{AIN} = 600$ нм соответствует образцам C2, расположенным в геометрическом центре держателей подложек, поэтому диэлектрическая проницаемость рассчитывалась только для конденсаторов C2.

Можно видеть, что значения емкостей конденсаторов с различным материалом обкладок, достаточно близки. Некоторые различия могут быть обусловлены морфологией, структурой и составом межслоевых интерфейсов. Более сложный рельеф интерфейсов увеличивает эффективную площадь конденсаторов, а взаимная диффузия атомов на интерфейсах слоев снижает эффективную толщину диэлектрического слоя. Оба эти фактора способствуют росту емкости. Полностью аморфная структура IZO/AlN/IZO по сравнению со структурой Cr/AlN/Cr характеризуется более гладкими интерфейсами (рис. 26), и меньшей емкостью, поэтому вычисленное значение относительной диэлектрической проницаемости для аморфного диэлектрического нитрида алюминия, равное 8,4, можно считать наиболее близким к реальному значению. Это значение близко к значениям для слоев AlN полученным различными методами. В работе [19] отмечалось, что слои нитрида алюминия толщиной 1250 нм, полученные методом импульсного магнетронного распыления на постоянном токе, характеризовались значением относительной диэлектрической проницаемости ~ 9,9.

Таблица 2

	-			
Структура	С1, пФ	С2, пФ	С3, пФ	ϵ_{AIN}
Cr/AlN/Cr	1156	1144	1186	8,62
IZO/AlN/IZO	1132	1118	1152	8,42

Измеренные значения емкости конденсаторов С1, С2, С3 и расчетные среднее значение средней емкости относительной диэлектрической проницаемости *ε_{AIN}* для сформированных конденсаторных структур Cr/AIN/Cr и IZO/AIN/IZO

Результаты исследования полученных конденсаторных структур методом импедансной спектроскопия в интервале частот 1 МГц – 0,1 Гц приведены на рисунке 3. Годографы Найквиста, приведенные на вставке рисунка 3, показывают минимальное шунтирование обкладок конденсатора активным сопротивлением диэлектрика, что свидетельствует о высоком удельном сопротивлении аморфных слоев нитрида алюминия. Поэтому к данным структурам в диапазоне частот 1 МГц – 1 Гц можно применить эквивалентную схему последовательной RC-цепочки, где R – активное сопротивление обкладок конденсатора.

Рис. 3. Зависимость емкости конденсатора С2 в планарной структуре IZO/AlN/IZO от частоты. Вставка – годографы Найквиста конденсаторных структур Cr/AlN/Cr (кривая 1) и IZO/AlN/IZO (кривая 2)

Наблюдающаяся сильная нелинейность емкости от частоты для конденсаторной структуры IZO/AlN/IZO в области низких частот (до 100 Гц) может быть обусловлена поляризационными процессами на поверхности наноразмерных структурных элементов в объеме диэлектрика [20]. При дальнейшем увеличении частоты величина емкости меняется незначительно. Частотная зависимость емкости для конденсаторной структуры Cr/AlN/Cr была аналогичной, что свидетельствовало об отсутствии влияния материала обкладок на частотную зависимость конденсатора на основе AlN.

Заключение

Методом реактивного высокочастотного магнетронного распыления алюминиевой мишени получены аморфные слои нитрида алюминия, характеризующиеся высокими оптическими и диэлектрическими характеристиками. Продемонстрирована возможность получения на его основе интегральных конденсаторных структур, в том числе и прозрачных в видимом диапазоне спектра. Одним из существенных преимуществ разработанного в этой работе процесса является то, что подложка не нагревалась в ходе послойного осаждения конденсаторных структур, что позволяет, в свою очередь, использовать такой процесс под задачу получения оптоэлектронных устройств на гибких полимерных подложках.

Работа выполнена в рамках государственных заданий Дагестанского ФИЦ РАН (в части синтеза образцов) и НИЦ «Курчатовский институт» (в части структурной характеризации образцов) с использованием оборудования АЦКП ДФИЦ РАН и ЦКП «Структурная диагностика материалов» ФНИЦ «Кристаллография и фотоника»

ЛИТЕРАТУРА

1. *Li N., Ho Ch. P., Zhu Sh., Fu Y. H., Zhu Y., Lee L. Y. T.* / Nanophotonics. 2021. Vol. 10. № 9. P. 2347. doi: 10.1515/nanoph-2021-0130

2. Xiong C., Pernice W. H. P., Sun X., Schuck C., Fong K. Y., Tang H. X. / New J. Phys. 2012. Vol. 14. № 9. P. 095014. doi: 10.1088/1367-2630/14/9/095014

3. *Pernice W. H. P., Xiong C., Tang H. X.* / J. Nanophotonics. 2013. Vol. 7. № 1. P. 073095. doi: 10.1117/1.JNP.7.073095

4. *Majkić A., Puc U., Franke A., Kirste R., Collazo R., Sitar Z., Zgonik M.* / Opt. Mater. Express. 2015. Vol. 5. № 10. P. 2106. doi: 10.1364/OME.5.002106

5. *Liu X., Bruch A. W., Gong Z., Lu J., Surya J. B., Zhang L., Wang J., Yan J., Tang H. X.* / Optica. 2018. Vol. 5. № 10. P. 1279. doi: 10.1364/OPTICA.5.001279

6. *Hu Z., Long L., Wan R., Zhang Ch., Zhang L., Yan J., Duan H., Wang L.* / Opt. Lett. 2020. Vol. 45. № 13. P. 3466. doi: 10.1364/OL.395909

7. Sinha N., Wabiszewski G. E., Mahameed R., Felmetsger V. V., Tanner Sh. M., Carpick R. W., Piazza G. / Appl. Phys. Lett. 2009. Vol. 95. \mathbb{N} 5. P. 053106. doi: 10.1063/1.3194148

8. Karabalin R. B., Matheny M. H., Feng X. L., Defaÿ E., Le Rhun G., Marcoux C., Hentz S., Andreucci P., Roukes M. L. / Appl. Phys. Lett. 2009. Vol. 95. № 10. P. 103111. doi: 10.1063/1.3216586

9. *Fei C., Liu X., Zhu B., Li D., Yang X., Yang Y., Zhou Q.* / Nanomater. Energy. 2018. Vol. 51. P. 146. doi: 10.1016/j.nanoen.2018.06.062

10. *Tadesse S. A., Li M.* / Nat. Commun. 2014. Vol. 5. № 1. P. 5402. doi: 10.1038/ncomms6402

11. Sohn D. B., Kim S., Bahl G. / Nat. Photonics. 2018. Vol. 12. № 2. P. 91. doi: 10.1038/s41566-017-0075-2

12. Fan L., Sun X., Xiong C., Schuck C., Tang H. X. / Appl. Phys. Lett. 2013. Vol. 102. № 15. P. 153507.

doi: 10.1063/1.4802250 13. Xiong C., Sun X., Fong K. Y., Tang H. X. / Appl.

Phys. Lett. 2012. Vol. 100. № 17. P. 171111.

doi: 10.1063/1.4707898

14. Bray K. R., Wu R. L. C., Fries-Carr S., Weimer J. / Thin Solid Films. 2009. Vol. 518. № 1. P. 366. doi: 10.1016/j.tsf.2009.06.052 15. Akhmedov A. K., Murliev E. K., Asvarov A. S., Muslimov A. E., Kanevsky V. M. / Coatings. 2022. Vol. 12. № 10. P. 1583. doi: 10.3390/coatings12101583

16. Singha A. V., Chandraa S., Srivastava A. K., Chakroborty B. R., Sehgal G., Dalai M. K., Bose G. / Appl. Surf. Sci. 2011. Vol. 257. P. 9568. doi: 10.1016/j.apsusc.2011.06.065

17. Ait Aissa K., Achour A., Elmazria O., Simon Q., Elhosni M., Boulet P., Robert S., Djouadi M. A. / J. Phys. D: Appl. Phys. 2015. Vol. 48. P. 145307. doi: 10.1088/0022-3727/48/14/145307 Khoshman J. M., Kordesch M. E. / J. Non-Cryst. Solids. 2005. Vol. 351. P. 3334.
doi: 10.1016/j.jnoncrysol.2005.08.009
19. Hassine N. B., Mercier D., Renaux Ph., Parat G., Basrour S., Waltz P., Chappaz C., Ancey P., Blonkowski S. /

J. Appl. Phys. 2009. Vol. 105. P. 044111.

doi: 10.1063/1.3081977.

20. Véliz B., Orpella A., Bermejo S. / Nanotechnology. 2019. Vol. 30. P. 405702. doi: 10.1088/1361-6528/ab2d58

PACS: 77.55.hd

Planar capacitor structures with an amorphous AlN based dielectric layer

*A. K. Akhmedov*¹, *E. K. Murliev*¹, *M. A. Gitikchiev*², *A. T. Temirov*² and *A. Sh. Asvarov*³

¹ Institute of Physics, Dagestan Federal Research Center of Russian Academy of Sciences 94 Yaragskogo st., Makhachkala, 367015, Russia

> ² Dagestan State Technical University 70 Imam Shamil Ave., Makhachkala, 367026, Russia

³ National Research Centre "Kurchatov Institute" 59 Leninsky Ave., Moscow, 119333, Russia E-mail: abil-as@list.ru

Received 1.02.2024; accepted 22.02.2024

Amorphous dielectric AlN films with a smooth surface morphology and a dense and uniform structure, characterized by an optical band gap of about 6.1 eV, a relative dielectric constant of 8.5 and high optical transparency in a wide spectral range from the near-UV to mid-IR, were obtained by the reactive radio-frequency (RF) magnetron sputtering of an aluminum target in an atmosphere of an $Ar-N_2$ gas mixture (ratio 15:1) at a relatively high pressure in the chamber at a level of 2.7 Pa, an RF discharge power of 100 W and room temperature of the substrate. The possibility of low-temperature production of integrated capacitor structures based on the AlN films, including transparent planar capacitive structures for various optoelectronic applications, is demonstrated.

Keywords: thin film, magnetro sputtering, AlN, transparent electrode, capacitor.

REFERENCES

1. Li N., Ho Ch. P., Zhu Sh., Fu Y. H., Zhu Y. and Lee L. Y. T., Nanophotonics **10** (9), 2347 (2021). doi: 10.1515/nanoph-2021-0130

2. Xiong C., Pernice W. H. P., Sun X., Schuck C., Fong K. Y. and Tang H. X., New J. Phys. **14** (9), 095014 (2012). doi: 10.1088/1367-2630/14/9/095014

3. Pernice W. H. P., Xiong C. and Tang H. X., J. Nanophotonics 7 (1), 073095 (2013). doi: 10.1117/1.JNP.7.073095

- 4. Majkić A., Puc U., Franke A., Kirste R., Collazo R., Sitar Z. and Zgonik M., Opt. Mater. Express 5 (10), 2106 (2015). doi: 10.1364/OME.5.002106
- 5. Liu X., Bruch A. W., Gong Z., Lu J., Surya J. B., Zhang L., Wang J., Yan J. and Tang H. X., Optica 5 (10), 1279 (2018). doi: 10.1364/OPTICA.5.001279
- 6. Hu Z., Long L., Wan R., Zhang Ch., Zhang L., Yan J., Duan H. and Wang L., Opt. Lett. **45** (13), 3466 (2020). doi: 10.1364/OL.395909

7. Sinha N., Wabiszewski G. E., Mahameed R., Felmetsger V. V., Tanner Sh. M., Carpick R. W. and Piazza G., Appl. Phys. Lett. **95** (5), 053106 (2009). doi: 10.1063/1.3194148

8. Karabalin R. B., Matheny M. H., Feng X. L., Defaÿ E., Le Rhun G., Marcoux C., Hentz S., Andreucci P. and Roukes M. L., Appl. Phys. Lett. **95** (10), 103111 (2009). doi: 10.1063/1.3216586

- 9. Fei C., Liu X., Zhu B., Li D., Yang X., Yang Y. and Zhou Q., Nanomater. Energy **51** 146, (2018). doi: 10.1016/j.nanoen.2018.06.062
- 10. Tadesse S. A. and Li M., Nat. Commun. 5 (1), 5402 (2014). doi: 10.1038/ncomms6402
- 11. Sohn D. B., Kim S. and Bahl G., Nat. Photonics 12 (2), 91 (2018). doi: 10.1038/s41566-017-0075-2
- 12. Fan L., Sun X., Xiong C., Schuck C. and Tang H. X., Appl. Phys. Lett. 102 (15), 153507 (2013).
- doi: 10.1063/1.4802250
- 13. Xiong C., Sun X., Fong K. Y. and Tang H. X., Appl. Phys. Lett. 100 (17), 171111 (2012).
- doi: 10.1063/1.4707898
- 14. Bray K. R., Wu R. L. C., Fries-Carr S. and Weimer J., Thin Solid Films 518 (1), 366 (2009).
- doi: 10.1016/j.tsf.2009.06.052

15. Akhmedov A. K., Murliev E. K., Asvarov A. S., Muslimov A. E. and Kanevsky V. M., Coatings **12** (10), 1583 (2022). doi: 10.3390/coatings12101583

16. Singha A. V., Chandraa S., Srivastava A. K., Chakroborty B. R., Sehgal G., Dalai M. K. and Bose G., Appl. Surf. Sci. 257 9568 (2011). doi: 10.1016/j.apsusc.2011.06.065

 Ait Aissa K., Achour A., Elmazria O., Simon Q., Elhosni M., Boulet P., Robert S. and Djouadi M. A., J. Phys. D: Appl. Phys. 48, 145307 (2015). doi: 10.1088/0022-3727/48/14/145307

18. Khoshman J. M. and Kordesch M. E., J. Non-Cryst. Solids. 351, 3334 (2005).

doi: 10.1016/j.jnoncrysol.2005.08.009

19. Hassine N. B., Mercier D., Renaux Ph., Parat G., Basrour S., Waltz P., Chappaz C., Ancey P. and Blonkowski S., J. Appl. Phys. **105** 044111 (2009). doi: 10.1063/1.3081977.

20. Véliz B. and Orpella A., S. Bermejo, Nanotechnology 30, 405702 (2019). doi: 10.1088/1361-6528/ab2d58